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Characteristic polynomials of random matrices at edge singularities
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We have discussed earlier the correlation functions of the random variables det(l2X) in which X is a
random matrix. In particular, the moments of the distribution of these random variables are universal functions,
when measured in the appropriate units of the level spacing. When thel ’s, instead of belonging to the bulk of
the spectrum, approach the edge, a crossover takes place to an Airy or to a Bessel problem, and we consider
here these modified classes of universality. Furthermore, when an external matrix source is added to the
probability distribution ofX, various different phenomenona may occur and one can tune the spectrum of this
source matrix to other critical points. Again there are remarkably simple formulas for arbitrary source matrices,
which allow us to compute the moments of the characteristic polynomials in these cases as well.

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

In the theory of random matrices, then-point correlation
functions of the eigenvalues are known to be expressibl
the determinant of a two-point kernel@1,2#. The expression
for this kernel depends on the various classes of universa
it is a simple sine kernel within the bulk of unitary invaria
ensembles, an Airy kernel at the edge of the spectrum,
Bessel kernel for other invariance properties of the meas
The level spacing probabilityp(s) has also been compute
recently for those different kernels@2,3#.

Another interesting object is given by the average m
ments of the characteristic polynomial of the random mat
These characteristic polynomials were first investigated
@4,5# for a uniform probability measure on unitary matrice
in connection with the moments of the Riemann zeta fu
tion. These results have been generalized to random Her
ian N3N matricesX with a unitary invariant probability
measure

P~X!5
1

Z
exp2N Tr V~X!. ~1!

Explicit formulas for the 2K-point functions

F2K~l1 , . . . ,l2K!5K)
1

2K

det~l l2X!L ~2!

have been derived, which show that these functions are
versal in the Dyson limit, in which the sizeN of the matrices
goes to infinity, the distances between thel ’s go to zero, and
the productsN(l i2l j ) remain finite. In particular, the mo
ments

F2K~l, . . . ,l!5^@det~l2M !#2K& ~3!
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of the distribution of the characteristic polynomials are giv
in the largeN limit by @6,7#

exp@2NKV~l!#F2K~l, . . . ,l!5@2pNr~l!#K2
e2NKgK ,

~4!

with

gK5 )
0

K21
l !

~K1 l !!
, ~5!

providedl belongs to the bulk of the support of the distr
bution of the eigenvalues, i.e., providedr(l) does not van-
ish. Then one sees explicitly that the only dependence u
the probability measure is through the average density
eigenvaluesr(l), and even the coefficientgK is a universal
number.

However, the result does take different forms for differe
universality classes. Our previous investigations for the th
classical Lie groups U(N), Sp(N), and O(N) are extended
here to the Bessel kernel and Airy kernel, for which t
density of statesr(l) presents a singularity at the edge
the spectrum. Furthermore, we have considered a Gaus
case in which an external matrix source is present@8# in the
probability distribution of the matrix,

P~X!5
1

Z
exp~2N Tr 1

2 X21N Tr AX!. ~6!

Explicit and simple formulas will be derived here again f
the correlation functions and the moments of the charac
istic polynomials of the matrixX, which depend on the spec
trum of the matrixA. By tuning the spectrum ofA appropri-
ately, one can generate a number of different situations.
instance, we have investigated in the past the case in w
the average spectrum ofX presents a gap in the presence
A, and by tuningA one can study the critical point at whic
this gap vanishes. This creates again a new class of un
sality, and a new kernel@9,10#. Other cases, such as two
3558 ©2000 The American Physical Society
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dimensional~2D! gravity in the double scaling limit, or the
Penner model, would certainly be of interest as well.

II. SINE KERNEL

For completeness, and for later use, we begin with
bulk unitary case, governed by the sine kernel, but with
derivation that differs from our previous one@6#. An inter-
esting geometric interpretation of this problem will also
provided. The kernel, from which all the correlation fun
tions may be obtained, is given in terms of orthogonal po
nomials for finiteN, but reduces in the Dyson largeN limit to
the sine kernel

K~x,y!5
sin~x2y!

x2y
~7!

in which x andy are the eigenvalues measured in the scale
the average spacing@2pr(l)N#21. Thus one obtains the
normalized moments

I K5e2NKV(l) ^@det~l2X!#2K&

@2pNr~l!#K2 5 lim
l i→0

detK~l i ,l j !

D2~L!
, ~8!

where D(L)5) i , j (l i2l j ) and i , j 51, . . . ,K. The right-
hand side may be expressed as a contour integral, follow
Eq. ~52! of @6#,

I K5 R R )
i

K
dui dv i

~2p i !2

D~U !D~V!

)
i 51

K

ui
K)

i 51

K

v i
K

)
i 51

K
sin~ui2v i !

ui2v i
.

~9!

This may be further reduced to

I K5det~anm!, ~10!

anm5
1

n!m!

]n

]un

]m

]vm

sin~u2v !

u2v U
u5v50

, ~11!

where n,m50,1, . . . ,K21. The explicit evaluation of the
determinant ofan,m gives

det~anm!52K22K )
l 50

K21
l !

~K1 l !!
. ~12!

We do recover in this way the factorgK @Eq. ~5!# ~up to a
factor 2K22K due to a different normalization of the kerne!.

It is quite remarkable that this universal normalizing fa
tor gK has a geometric interpretation as a Fredholm deter
nant of the Dirac Laplacian on the two-dimensional sph
S2. The determinant of the Laplacian has been discusse
connection with string theory@11,12#, and the relation ofgK
to this Fredholm determinant of the Laplacian was noticed
@5#. Indeed, let us show that

gK5
eK2(11g)

D1~2K !
, ~13!
e
a

-

f

g

-
i-
e
in

n

whereg is Euler’s constant andD1(z) the determinant of a
Dirac operator, defined below. The derivation goes as
lows. Let us introduce a functionG(z) that satisfies the func
tional relation

G~z11!5G~z!G~z!. ~14!

It is then straightforward to verify that

gK5 )
l 50

K21
l !

~K1 l !!
52K22K2 pK11/2

G~K1 1
2 !

F G~ 1
2 !

G~K1 1
2 !

G 2

.

~15!

A function G satisfying the functional relation~14! is known
in the literature as a Barnes function~or as the inverse of a
digamma function!. It is defined by

G~z11!5
1

G2~z11!

5~2p!z/2e2[z1(11g)z2]/2

3)
1

` F S 11
z

nD n

e2z1z2/(2n)G . ~16!

It has been noticed earlier@13# that this Barnes function is
related to the Fredholm determinant of the Laplacian
S2. Indeed, this Fredholm determinant is the~regularized!
product

D~z!5)
l

S 12
z

l l
D gl

, ~17!

where thel l are the eigenvalues of the Laplacian andgl their
degeneracy, i.e.,l l5 l ( l 11) with multiplicity gl52l 11, l
50,1,2, . . . . It is convenient to shiftz by 1/4, since this
yields the the spectrum of the Dirac operator

Al l1
1

4
5 l 1

1

2
. ~18!

Then the regularized~shifted! Fredholm determinant

D~z!5)
l 50

` F S 12
z

~ l 1 1
2 !2D ez/( l 11/2)2G 2l 11

~19!

factorizes as

D~2y2!5D1~ iy !D1~2 iy ! ~20!

with the determinant of the Dirac operatorD1(z) given by
@13#

D1~z!5)
l 50

` F S 12
z

l 1
1

2
D ez/( l 11/2)1z2/2(l 11/2)2G 2l 11

.

~21!

Then this Dirac determinantD1 is related to the Barnes
function by
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D1~z!5p21/2~2p!ze(11g12 log 2)z2 G~ 1
2 2z!G~ 1

2 2z!2

G~ 1
2 !2

.

~22!

We thereby recover the expression relating the momentgK
to the determinant~13!.

This relation between the moments of the distribution a
the determinant of the Dirac operator onS2 is in fact general.
For instance, in the simplest case of a single Gaussian
dom variable, the moments are

E
2`

`

x2Ke2x2
dx5G~K1 1

2 !; ~23!

G(K11/2) is thus the equivalent ofgK for this trivial prob-
lem. If we consider the ‘‘Laplacian,’’ i.e., the harmonic o
cillator whose eigenvalues areln5n, then the Fredholm de
terminantD(l) is

D~l!52l )
n51

` S 12
l

nDel/n

5
egl

G~2l!
. ~24!

Hence, we have

^x2K&
egl

D~l!
U

l52(K11/2)

. ~25!

The expression~13! is a multivariable version of this Gauss
ian integral.

An additional point of interest is that the Fredholm det
minant of this Laplacian onS2 may be factorized further into
a product of two factors; it turns out that each factor ent
into the corresponding expression for the symplectic and
thogonal cases, respectively. This will be seen below w
we examine the moments related to the Bessel kernel.

III. BESSEL KERNEL

We have discussed in our previous work the ensem
invariant under the unitary symplectic and unitary orthogo
Lie groups@6#. The kernels for those ensembles are@14–16#

K~x,y!5
1

2p S sin~x2y!

x2y
7

sin~x1y!

x1y D , ~26!

where the minus sign corresponds to the Sp and the plus
to the O ensemble. It is convenient to introduce the Bes
kernel defined by

Ka~x,y!5
Ja~x!Ja8 ~y!2Ja8 ~x!Ja~y!

x2y
. ~27!

SinceJ1/2(x)5A2/px sinx, J21/2(x)5A2/px cosx, the ker-
nels for the Sp and O ensembles are both related to
Bessel kernel

K6~x,y!5AxyK61/2~x2,y2!, ~28!
d

n-

-

s
r-
n

s
l

gn
el

is

namely,a51/2 anda521/2 represent, respectively, the S
and the O ensemble. We consider from now on an arbitarya.
The 2Kth moment at the origin (l50) is expressed as

I K5 R R du dv

~2p!2

D~u2!D~v2!

)
i 51

K

ui
2Kv i

2K

)
i 51

K

~uiv i !
aKa~ui ,v i !.

~29!

We define now the two functionsf(z) andc(z) by

Ja~Az!5SAz

2 D a 1

G~a11!
f~z! ~30!

and

AzJa8 ~Az!5
za/2

2aG~a!
c~z!. ~31!

Their expansions in powers ofx are given by

f~x!5 (
n50

`
~21!nxn

4nn!)
l 51

n

~a1 l !

~32!

c~x!5 (
n50

`
~21!nxn~a12n!

4nn!)
l 50

n

~a1 l !

. ~33!

Keeping aside trivial factors we are then led to the ker
K̃a(x,y) defined as

K̃a~x,y!5
1

2~x2y!
@f~x!c~y!2c~x!f~y!#. ~34!

As before, we have

I K5det~anm! ~35!

with

anm5
1

n!m!

]n

]un

]m

]vm
K̃a~u,v !U

u5v50

. ~36!

This determinant may be computed explicitly, and it is giv
by

I K542K22aK )
l 50

2K21
1

~a1 l !!
. ~37!

~We haveI 15 1
4 ,1/3p,1/p for a50,1

2 ,2 1
2 , respectively.!

It is interesting to relate the three determinants that
have introduced above for the sine kernel and for the Sp
O cases. The determinant for the sine kernel~11! is



e

al

e
n

n

sid-

e to
m-
rod-
ect

ial

a

s

oef-
nts

PRE 62 3561CHARACTERISTIC POLYNOMIALS OF RANDOM . . .
I U5detS 1 0 2
1

6
0 . . .

0
1

3
0 2

1

30
. . .

2
1

6
0

1

20
0 . . .

0 2
1

30
0

20

7!
. . .

D . ~38!

In the symplectic case,a5 1
2 , we have

I Sp5detS 1

3
2

1

30
. . .

2
1

30

20

7!
. . .

. . . . . . . . .

D . ~39!

In the orthogonal case, the determinant becomes fora5
2 1

2

I O5detS 1 2
1

6
. . .

2
1

6

1

20
. . .

. . . . . . . . .

D . ~40!

Thus, we find the factorization of Eq.~38! as the product of
Eqs.~39! and~40!, up to a trivial numerical factor due to th
normalizations,

I U5I Sp3I O. ~41!

The factorsgK for the unitary, symplectic, and orthogon
cases are related as 2K221gK

(U)5gK
(Sp)gK

(O) , and gK
(U)

5() l 51
K21l !) 2/() l 51

2K21l !),gK
(Sp)52K(K11)/2) l 51

K l !/ ) l 51
K (2l )!,

andgK
(O)2K(K11)/221) l 51

K21l !/ ) l 51
K21(2l )!. It is again remark-

able that, for arbitrarya, gK may still be expressed as th
Fredholm determinant of the Laplacian, in which the eige
values are shifted by the amounta @13#.

IV. AIRY KERNEL

When the eigenvalues lie near an edgelc of the support
of the asymptotic density of states~an edge of Wigner’s
semicircle in the Gaussian case!, in a neighborhood of size
N22/3 of that edge, there is a crossover from the sine ker
to the Airy kernel. In terms of the Airy function Ai(x), de-
fined by

Ai ~x!5
1

2pE2`

`

dz e( i /3)z31 izx, ~42!

which satisfies the differential equation

Ai 9~x!5x Ai ~x!, ~43!

one has
-

el

K~x,y!5
Ai ~x!Ai 8~y!2Ai 8~x!Ai~y!

x2y
. ~44!

In Eq. ~44! we have used the scaling variablesx andy pro-
portional toN2/3(l2lc).

There are two ways to obtain the moments under con
eration. The first one is to write as before

I K5^@det~lc2X!#2K&5 R du

2p i

D~u!D~v !

)
i 51

K

ui
Kv i

K

)
i 53D1

K

K~ui ,v i !,

~45!

but in this case, there are three periodic structures du
three valleys of Airy functions, and the result is more co
plicated. It does not seem to be expressible as simple p
ucts of gamma functions. However, we can use a dir
method starting with the expression

I K5^@det~lc2X!#2K&5
1

~2p!2KE2`

`

dzD2~z!e( i /3)(
i 51

2K

zi
3
.

~46!

This representation is the edge limitl l→0 of

F2K5E
2`

`

) dzl R dui

2p i

D~z!D~u!

)
i

)
l

~ui2lc1l l !

3eN(1
2K[( i /3)zl

3
1 izlul ] . ~47!

The sums and products overl run from l 51 to l 52K. The
dependence ofF2K on N is of orderN2K2/32K.

We may then use the standard orthogonal polynom
method. To the complex measure

dm5dz eiz3/3, ~48!

we associate the orthogonal polynomialspn defined as

pn~x!5xn1~ lower degree! ~49!

and

E dm pn~x!pm~x!5hndn,m . ~50!

The integral of Eq.~42! is then simply

I 5K!h0h1•••hK21 . ~51!

Note that this looks similar to the partition function of
matrix model, but here it is the partition function of aK
3K matrix model, instead ofN3N (K is finite, since it is
the order of the moment that we are considering, whereaN
goes to infinity!. Therefore for anyK this is a completely
explicit expression of the moments at the edge. Those c
ficientshn are expressible in terms of ratios of determina
constructed with the moments of the measure:
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hn5
dn

dn21
~52!

with

dn5detS m0 m1 ••• mn

m1 m2 ••• mn11

••• ••• ••• •••

mn mn11 ••• m2n

D ~53!

in which the mn are the moments of the measure. Tho
determinants are constants along antidiagonal lines~Hankel
determinants!. Then the producth0h1•••hK21 is reduced to
a single determinant. For example, we have forK54

h0h1h2h35detS C1 2 iC2 0 iC1

2 iC2 0 iC1 2C2

0 iC1 2C2 0

iC1 2C2 0 24C1

D ~54!

with C15Ai(0) 5322/3/G(2/3), C25Ai 8(0)52321/3/
G(1/3), since all the moments up tom6 are easily expressible
in terms ofm0 andm1 alone.

More generally we have

mn5E zn dm5~2 i !n~n22!~n25!~n28!•••Ãn

~55!

where Ãn5C1 for n50 ~modulo 3!, Ãn5C2 for n51
~modulo 3!, andÃn50 for n52 ~modulo 3!. The last paren-
thesis of the product in the RHS of Eq.~55! is the rest of the
division of n22 by 3. Then,dn is the determinant of a
Hankel matrix, whose matrix elements in the first row a
e

@^z0&,^z&,^z2&, . . . #5@C1 ,2 iC2,0,iC1,2C2,0,
24C1,10iC2,0,228iC1 ,280C2,0, . . .#, and all the others
are given by the Hankel rule. In this way we obtain suc
sively

h05C150.355 028 053,

h0h15C2
250.066 987 483,

)
0

2

hl52C2
31C1

350.010 074 161,

~56!

)
0

3

hl528C1C2
323C1

450.001 580 882,

)
0

4

hl572C2
5128C1

3C2
250.000 313 095 517,

)
0

5

hl522160C2
621952C1

3C2
32432C1

6

50.000 090 756 324.

Therefore for the edge problem we have found mome
given by gK’s which are more complicated sincegK

5)0
2K21hl . The result is explicit for any finiteK, but we

have not succeeded in continuing it to nonintegerK. The
numerical values indicate a smooth curve in a logarithm
plot.

V. FINITE N RESULTS

We derived in our previous paper@6# the correlation func-
tions of the characteristic polynomials in the form of
determinant,
nity,

q.
FK~l1 , . . . ,lK!5K)
1

K

det~l l2X!L
5

1

D~l1 , . . . ,lK!
detU pM~l1! pM11~l1! ••• pM1K21~l1!

pM~l2! pM11~l2! ••• pM1K21~l2!

A

pM~lK! pM11~lK! ••• pM1K21~lK!

U , ~57!

in which X is anM3M random matrix.
The polynomialspn(x) are the~monic! orthogonal polynomials, whose coefficients of highest degree are equal to u

pn~x!5xn1~ lower degree!. ~58!

If we are concerned simply with the moments of the distribution of a single characteristic polynomial, we obtain from E~57!

mK~l!5FK~l, . . . ,l!5^@det~l2X!#K&

5
~21!K(K21)/2

)
l 50

K21

~ l ! !

detU pM~l! pM11~l! ••• pM1K21~l!

pM8 ~l! pM118 ~l! ••• pM1K218 ~l!

A

pM
(K21)~l! pM11

(K21)~l! ••• pM1K21
(K21) ~l!

U . ~59!
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For the Gaussian distribution,

P~X!5
1

ZM

exp2
N

2
Tr X2, ~60!

with

M5N2K, ~61!

the polynomialspn(x) are the Hermite polynomialsHn(x),
defined with our normalization as

Hn~x!5
~21!n

Nn
eNx2/2S d

dxD
n

e2Nx2/25xn1~ lower degree!.

~62!

The integral representation

Hn~x!5
~21!nn!

Nn R dz

2ip

e2N(z2/21xz)

z(n11)
~63!
t

over a contour that circles around the origin in thez plane
turns out to be well adapted.

Note that all these expressions are valid for finiteN. We
may thereby recover readily several results that we have
cussed in previous sections. For instance, let us assume
M is an even number, and consider the center valuel50
„since the dependence onl is known to be contained entirel

in the overall factor@r(l)#K2
, as far as the coefficientgK is

concerned, it is sufficient to put simplyl50….
The Hermite polynomialsHn(x) vanish for oddn at x

50. Similarly, the odd derivatives ofHn(x) for evenn also
vanish atx50. Hence, the elements of the determinant~59!
are alternately nonzero and then zero. Thus the determi
is decomposed into a product of two determinants; this is
exact phenomenon for finiteN of the factorization of the
symplectic and orthogonal determinants that we saw ea
for large N. Since the matrix elements of Eq.~59! at l50
are all expressed as derivatives of Hermite polynomials
the origin, it is possible to compute this determinant exac
for finite and arbitraryM andK. For the evenM case,
F2K~0!5
~21!K(2K21)

)
l 53D0

2K21

~ l ! !

detU HM~0! HM12~0! •••

HM9 ~0! HM129 ~0! •••

A

HM
(2K22)~0! HM12

(2K22)~0! •••

UdetU HM118 ~0! HM138 ~0! •••

HM11- ~0! HM13- ~0! •••

A

HM11
(2K21)~0! HM13

(2K21)~0! •••

U . ~64!
of
We denote each determinant asI (1)/NKM /2 and I (2)/NKM /2,
respectively, and

F2K~0!5I (1)I (2)
1

NKM

1

)
l 50

2K21

l !

. ~65!

The above two determinants are easily computed through
explicit expressions for theHn(x)’s,

H2n~x!5
1

n
~21!n~2n21!!!

3 (
m50

`
~2n!~2n11!•••~2n1m21!

~ 1
2 !~ 1

2 11!•••~ 1
2 1m21!

3
1

m! S Nx2

2 D m

, ~66!

H2n11~x!5
1

Nn
~21!n~2n11!!! x

3 (
m50

`
~2n!~2n11!•••~2n1m21!

~ 3
2 !~ 3

2 11!•••~ 3
2 1m21!

3
1

m! S Nx2

2 D m

. ~67!
he

The two determinants contain overall products of factors
the form (2n21)!!; once they are extracted one finds

I (1)5C~M12K23!!! ~M12K25!!! •••~M21!!!

5C
1

2[K(M1K23)]/2 )l 51

K S G~M12l 22!

G~M /21 l 21! D , ~68!

I (2)5C~M12K21!!! ~M12K23!!! •••~M11!!!

5C
1

2[K(M1K21)]/2 )l 51

K S G~M12l !

G~M /21 l ! D , ~69!

with

C52K(K21)/2)
l 50

K21

l !, ~70!

which is independent ofM. In the largeM limit, from the
Stirling formula, we have

I (1).CM [ MK1K(K21)]/2e2MK/22K/2, ~71!

I (2).CM [ MK1K(K11)]/2e2MK/22K/2. ~72!

It is remarkable that, even for finiteM (M is the size of the
random matrix!, F2K(0) for this Gaussian distribution
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already exhibits the factor gK5) l 50
K21l !/(K1 l )!

5() l 50
K21l !) 2/) l 50

2K21l !, which is known to be universal in the
largeM limit. It is indeed obtained from the product of th
factor C and 1/() l 50

2K21l !) in Eq. ~65!. This means that, a
each order of the 1/N expansion, we keep this universal fa
tor for F2K(0). In the large N limit ( M5N2K), F2K(0)
becomes

F2K~0!.~2N!K2
e2NK )

0

K21
l !

~K1 l !!
. ~73!

In the previous paper, we derivedF2K(l), in the largeN
limit, as

F2K~l, . . . ,l!.@2pr~l!N#K2
e2NK )

0

K21
l !

~K1 l !!
.

~74!

At the band center,l50, the density of state isr(0)51/p
for the Gaussian distribution. Therefore, Eq.~73! is indeed
consistent with Eq.~74!.

It may be interesting to note that one of the factors of E
~74!, namely, ) l 50

2K21( l !), appears inF2K(l) in Eq. ~59!.
This factor, a product of gamma functions, remains for a
set of orthogonal polynomials, since it stands in front of t
determinant of Eq.~59!.

The factore2NK is cancelled by the normalization@6#. For
lÞ0, we have evaluatedF2K(l). We have here considere
the finiteN case to see the universal factorgK .

One can recover again the Airy limit by the use of E
~59!. We use once more the properties of the Hermite po
nomials, such as

Hn8~x!5nH~x!, ~75!

and their explicit integral representation,

Hn~x!5
1

A2p
N1/2eNx2/2E

2`

`

ds sne2Ns2/22 iNxs. ~76!

We setn5d1N, and after exponentiation we have

Hn~x!5
1

A2p
N1/2eNx2/2E

2`

`

ds sde2N f(s), ~77!

where f (s)5 1
2 s21 isx2 logs. The saddle points are dege

erate at the edgex52. The vicinity of this point is blown out
through a change of variables, with a scaling ansatz

x521N2ay ~78!
.

y
e

.
-

and

s52 i 1N2bz. ~79!

If one expandsf (s) up to orderz3, one sees that in the
proper scaling choicea52/3 andb51/3, one recovers the
Airy limit which governs the properties of the system in
neighborhood of sizeN22/3 of the edge of Wigner’s semi
circle. Then the integral becomes

I 5~2 i !dN21/3E
2`

`

dy eiy3/31 izy ~80!

This is indeed the Airy function Ai(z) of Eq. ~42!,

HN1d~x!5A2pNe2N~2 i !dAi „~x22!N2/3
…. ~81!

We now consider all thel i52, and the determinant~59!
becomes in the largeN limit a determinant of Airy functions.
If we replaceHM12K21 at the right top corner of the deter
minant by the Airy function Ai(0), theother matrix elements
become derivatives of the Airy function, since there is
recursion relation~75!. For example, in theK51 case, we
have

detUHM~2! HM11~2!

HM8 ~2! HM118 ~2!
U;detU N2/3

M11
Ai 8~0! Ai ~0!

N4/3

M11
Ai 9~0! N2/3Ai 8~0!

U .

~82!

Then we find in the largeN limit, with N5M2K,

F2K~2!5
N2K(K11)/3

)
l 50

2K21

l !

detU••• Ai 8~0! Ai ~0!

••• Ai 9~0! Ai 8~0!

••• ••• •••

U . ~83!

The above determinant was discussed earlier. Note the fa
1/) l 50

2K21l ! in front.

VI. DERIVATIVE MOMENTS

The same techniques may also be used if one is intere
in the moments of theDth derivatives (D51,2, . . . ) of the
characteristic polynomials. Let us consider, for instance,

F2K
(D)~l1 , . . . ,l2K!5K )

l 53D1

2K
]D

]l i
D

det~l i2X!L . ~84!

From Eq.~59!, one sees immediately that it also has the fo
of a determinant:
F2K
(D)~l1 , . . . ,l2K!5

1

D~l1 , . . . ,l2K!
detU pM

(D)~l1! pM11
(D) ~l1! ••• pM12K21

(D) ~l1!

pM~l2!(D) pM11
(D) ~l2! ••• pM12K21

(D) ~l2!

A

pM
(D)~l2K! pM11

(D) ~l2K! ••• pM12K21
(D) ~l2K!

U . ~85!

When all thel i ’s are equal, we have
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F2K
(D)~l, . . . ,l!5K S dD

dlD
det~l2X!D 2KL

5
~21!K(2K21)

)
l 50

2K21

~ l ! !

detU pM
(D)~l! pM11

(D) ~l! ••• pM12K21
(D) ~l!

pM
(D11)~l! pM11

(D11)~l! ••• pM12K21
(D11) ~l!

A

pM
(D12K21)~l! pM11

(D12K21)~l! ••• pM12K21
(D12K21)~l!

U . ~86!
o
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If we setl50 it may be again decomposed into a product
two determinants. Let us assume for definiteness that botM
andD are even. Then we have

I (1)5detU HM
(D)~0! HM12

(D) ~0! •••

HM
(D12)~0! HM12

(D12)~0! •••

A

HM
(D12K22)~0! HM12

(D12K22)~0! •••

U ,

~87!

I (2)5detU HM11
(D11)~0! HM13

(D11)~0! •••

HM11
(D13)~0! HM13

(D13)~0! •••

A

HM11
(D12K21)~0! HM13

(D12K21)~0! •••

U .

~88!

Using the explicit expressions for the Hermite polynomia
we can compute these determinants. We find for arbitr
M , D, andK,

F2K
(D)~0!5

1

NK(M2D)
I (1)I (2)

1

)
l 50

2K21

l !

, ~89!

I (1)5~M12K23!!! ~M12K25!!! •••~M21!!!

3 )
l 50

K21 F S M

2
1 l D S M

2
1 l 21D •••S M

2
2

D

2
1 l 11D G

32[DK1K(K21)]/2)
l 50

K21

l !, ~90!

I (2)5~M12K21!!! ~M12K23!!! •••~M11!!!

3 )
l 50

K21 F S M

2
1 l 11D S M

2
1 l D •••S M

2
2

D

2
1 l 12D G

32[DK1K(K21)]/2)
l 50

K21

l !. ~91!

@One may easily check these results forD5M , since the
matrix elements below the diagonal vanish, i.e., the deter
nants are then simply given by the product of the diago
elements) l 50

K (M12l )! which agrees with Eq.~90!. When
f

,
ry

i-
l

D50, it reduces to the previous expression~68!. I (2) is ob-
tained fromI (1) by the shiftM→M12.#

In the largeN limit, we have

F2K
(D)~0!.~2N!K212KDe2KN

1

22KD )
l 50

K21
l !

~K1 l !!
. ~92!

Hence, for these derivative moments at finiteM, again the
universal factorgK is present, and it persists, of course,
the largeN limit.

These results lead to the conjecture that the average o
moment of derivatives of the Riemann zeta function alo
the critical line

I 5
1

TE0

T

dtU dD

dtD
zS 1

2
1 i t DU2K

~93!

also have this universal factorgK .

VII. EXTERNAL SOURCE

We now consider the case in which the external sou
matrix A is coupled to the random matrixX. The measure of
the random matrixX is

dm~X!5
1

Z
e2N Tr X2/21N Tr XAdN2

X. ~94!

The eigenvalues of the matrixA are denoted byai , i
51, . . . ,N. In such cases, the standard orthogonal poly
mial method cannot be used. However, then-point correla-
tion functions r(l1 , . . . ,ln) have been found to be de
scribed again by the determinant of a kernel; from there
level spacing probabilityp(s) has also been investigated@9#.
If we specialize to a source that has two opposite eigen
ues, namely,ai51a for i 51, . . . ,N/2 and ai52a for i
5N/211, . . . ,N, we find a support for the eigenvalue
made of two disconnected segments fora.1. If one tunes
the external source so thata51, i.e., ai561, the gap be-
tween the two segments closes and the spectrum consis
a single segment fora,1. We want to investigate here th
critical point a51 which gives rise to yet another clas
of universality. The momentsF2K(l, . . . ,l) at l50 at
this closing gap point may turn out to have interesti
applications.

SinceX andA are Hermitian matrices, we write

Tr XA5Tr U21X0UA0 , ~95!
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3566 PRE 62EDOUARD BRÉZIN AND SHINOBU HIKAMI
where X05diag(x1 , . . . ,xM), A05diag(a1 , . . . ,aM), and
U belongs to the unitary group. The integration over t
unitary groupU is well known from the work of Harish-
Chandra and Itzykson and Zuber@18,19#, and this is the
starting point of the formulas found in@8#. For instance, the
n-point correlation functions are given by the determinant
the n3n matrices made with the kernelK(l i ,l j ) with

K~l,m!5E
2`

` dt

2p R du

2p i)l 51

N
al2 i t

u2al

1

u2 i t

3e2Nt2/21Nitl2Nu2/21Num1Nl2/42Nm2/4 ~96!

where the contour encloses all theal ’s.
However, we may proceed without that here and comp

the correlation functions of the characteristic polynomi
directly. Indeed,

FK~l1 ,•••,lK!5K )
a51

K

det~la2X!L
5

1

ZE dX)
a51

K

det~la2X!

3e2N Tr X2/21N Tr XA. ~97!
in
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s

f
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s

In the above equation, the random matrixX is assumed to be
an M3M matrix, with M5N2K, as before. WhenK51,
this gives a polynomial, which was investigated before@17#.

Explicit integration over the unitary group@18,19# leads
to

FK~l1 , . . . ,lK!5E )
i 51

M

dxi

D~x1 , . . . ,xM ;l1 , . . . ,lK!

D~a!D~l!

3e2(N/2)(
i 51

M

xi
2
1N(

i 51

M

xiai ~98!

whereD(x1 , . . . ,xM ;l1 , . . . ,lK) is the Van der Monde de
terminant (M1K)3(M1K) made with thex’s and thel ’s.
This determinant may be replaced by a determinant
~monic! polynomials, and we choose the Hermite polynom
als defined in Eq.~62!. It is then straightforward to verify
that

E
2`

`

Hn~x!e2Nx2/21Naxdx5aneNa2/2A2p

N
. ~99!

Therefore we can explicitly integrate over theM variablesxi
in Eq. ~98! and obtain
FK~l1 , . . . ,lK!5
1

D~a!D~l!
detU 1 ••• 1 H0~l1! . . . H0~lK!

A � A A � A

a1
M1K21 . . . aM

M1K21 HM1K21~l1! . . . HM1K21~lK!
U . ~100!
is
ting
Let us first check that in the limit of a vanishing source
which all theai→0 we do recover the previous formula~57!.
The column that depends uponai is expanded in Taylor se
ries arounda1, and, subtracting the successive columns,
obtain, after factoring the Van der Monde determinantD(a)
which cancels the denominator, a vanishing upper trian
~up to theM th column!, 1s on the diagonal and powers of th
ai ’s below the diagonal. We can now let theai ’s go to zero
and we are left with theK3K of Eq. ~57!. ~In @6# we gave a
different derivation of this same formula.!

If we return to an arbitrary nonvanishing external sour
we may proceed by returning to Eq.~100! and define
GK(b1 , . . . ,bK),

GK~b1 , . . . ,bK!5E FK~l1 , . . . ,lK!D~l!

3e2(N/2)(l l
2
1N( l l bl) dl i

5
D~a;b!

D~a!
e(N/2)(bl

2
. ~101!

We may now recoverFK by taking the Fourier transform o
GK( ib1 , . . . ,ibK),
e

le

,

E GK~ ib1 , . . . ,ibK!e2 iN(l i bi)
i 51

K
dbi

2p

5S 1

ND K

D~l!FK~l1 , . . . ,lK!e2(N/2)(l l
2
. ~102!

Therefore, we obtain the explicit formula,

FK~l1 , . . . ,lK!5
NK

D~l!
e(N/2)(l l

2 1

K! E )
i 51

K
dbi

2p

3)
j 51

M

~ ibl2aj ! )
l , l 8

K

~ ibl2 ibl 8!

3e2(N/2)(bl
2
det~e2 iNl l bl 8!. ~103!

Note that we could replace det(e2 iNl l bl 8) in the integrand of

Eq. ~103! by the diagonal terme2 iN(1
Kl l bl and cancel theK!

in the denominator. Again we can examine the limit of th
formula when the external source goes to zero, and put
all l i5l we obtain
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F2K~l!5
NK(2K11)

)
l 50

2K21

l !

1

~2K !!
eKNl2E )

l 51

2K

bl
MD2~b!

3e2(N/2)(bl
2
2 iNl( bl)

l 51

2K
dbl

2p
~104!

~we have consideredF2K instead ofFK in order to compare
with our previous results!. In the largeN limit, we exponen-
tiate bl

M(M5N2K), and look for the saddle points whic
are the roots of the equationb21 ilb2150; let us call the
two rootsb1 and b2. The differenceub12b2u52pr(l).
The leading saddle point for thebl ’s ( l 51, . . . ,2K) is ob-
tained by choosing half of them equal tob1 andb2 for the
another half. The Gaussian integral with a Van der Mon
determinant,

1

K! E )
i 51

K

dbie
2N f9b2/2)

i , j

K

~bi2bj !
2

5S 2p

N f9
D K/2 )

l 50

K21

l !

~N f9!K(K21)/2
, ~105!

where f 9 is the second derivative off at the saddle point
allows us to complete the calculation. Integrating th
around the saddle pointsb1 andb2, and keeping in mind the
combinatorial factor (2K)!/K!K!, which is the number of
choices ofKb1 and Kb2 among the 2Kbl ’s, we recover
precisely our previous result,

e2NKV(l)F2K~l!5@2pNr~l!#K2
e2NKgK , ~106!

where

gK5~) l 50
K21l ! !2/~) l 50

2K21l ! !5~) l 50
K21l ! !/) l 50

K21~K1 l !!,

andV(l)5l2/2.
e

n

From the expression~103!, it is also easy to obtain the
moments at the critical point corresponding to the closure
the gap:

FK~0!5
NK

K!
eNM/2E )

l 51

K
dbl

2p
~11bl

2!M /2D2~b!e2(N/2)(
l 51

K

bl
2
.

~107!

Note that this expression is exact for finiteN. In the largeN
limit, we exponentiate the logarithmic term and expand
exponent aboutbl up to the orderbl

4 term. The critical point
is precisely the point at which the coefficient of the quadra
term bl

2 vanishes. We then have

FK~0!5
NK

K!
eNM/2E )

dbl

2p
e2(N/2)(

l 51

K

bl
4
D2~b!.

~108!

As in all the cases that appeared in the previous sections,
integral is expressed by a Hankel determinant, in which
matrix elements areG„(2n21)/4…. The determinant is

I 5detUG~ 1
4 ! 0 G~ 3

4 ! 0 . . .

0 G~ 3
4 ! 0 G~ 5

4 ! . . .

G~ 3
4 ! 0 G~ 5

4 ! 0 . . .

. . . . . . . . . . . . . . .

U . ~109!

Note that we have considered the caseal561, but the for-
mulas are explicit for any spectrum of the source and th
could be easily used to study, for instance, the multicriti
situations that were discussed in@9#.
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