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Characteristic polynomials of random matrices at edge singularities
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We have discussed earlier the correlation functions of the random variables—-d€x(in which X is a
random matrix. In particular, the moments of the distribution of these random variables are universal functions,
when measured in the appropriate units of the level spacing. Whexighmstead of belonging to the bulk of
the spectrum, approach the edge, a crossover takes place to an Airy or to a Bessel problem, and we consider
here these modified classes of universality. Furthermore, when an external matrix source is added to the
probability distribution ofX, various different phenomenona may occur and one can tune the spectrum of this
source matrix to other critical points. Again there are remarkably simple formulas for arbitrary source matrices,
which allow us to compute the moments of the characteristic polynomials in these cases as well.

PACS numbdps): 05.45—a, 05.40-a

[. INTRODUCTION of the distribution of the characteristic polynomials are given
in the largeN limit by [6,7]

In the theory of random matrices, tmepoint correlation
functions o_f the eigenvalues_ are known to be express_ible asexg — NKV(N)JF (X, ... ,)\):[ZWNP()\)]KZe—NKy
the determinant of a two-point kerngl,2]. The expression
for this kernel depends on the various classes of universality:
it is a simple sine kernel within the bulk of unitary invariant with
ensembles, an Airy kernel at the edge of the spectrum, or a
Bessel kernel for other invariance properties of the measure. K-1
The level spacing probabilitp(s) has also been computed VK= K1 (5)
recently for those different kernefg,3]. 0 :

Another interesting object is given by the average mo- ) .
ments of the characteristic polynomial of the random matrixProvided belongs to the bulk of the support of the distri-
These characteristic polynomials were first investigated irPution of the eigenvalues, i.e., providp@\) does not van-
[4,5] for a uniform probability measure on unitary matrices, 'Sh- Then one sees explicitly that the only dependence upon
in connection with the moments of the Riemann zeta funcin€ probability measure is through the average density of
tion. These results have been generalized to random Hermigigenvaluep (i), and even the coefficient is a universal

ian NX N matricesX with a unitary invariant probability number. _ _
measure However, the result does take different forms for different

universality classes. Our previous investigations for the three
1 classical Lie groups W), Sp(N), and O(N) are extended
P(X)= Zexp—NTrV(X). (1) here to the Bessel kernel and Airy kernel, for which the
density of stateg(\) presents a singularity at the edge of
the spectrum. Furthermore, we have considered a Gaussian
case in which an external matrix source is pre$éhin the
probability distribution of the matrix,

K

Explicit formulas for the K-point functions

2K
Fak(Ag, ... J\zK):<H de()\|—X)> 2 1
' P(X) = Zexp(~NTr X2+ N TrAX). 6)

have been derived, which show that these functions are uni-
versal in the Dyson limit, in which the si2¢ of the matrices  Explicit and simple formulas will be derived here again for
goes to infinity, the distances between Nig go to zero, and the correlation functions and the moments of the character-
the productdN(A;—A;) remain finite. In particular, the mo- istic polynomials of the matriX, which depend on the spec-
ments trum of the matrixA. By tuning the spectrum oA appropri-
ately, one can generate a number of different situations. For
Foc(\, ... \)=([de{x—M)]*) (3 instance, we have investigated in the past the case in which
the average spectrum &f presents a gap in the presence of
A, and by tuningA one can study the critical point at which
*Email address: brezin@physique.ens.fr this gap vanishes. This creates again a new class of univer-
"Email address: hikami@rishon.c.u-tokyo.ac.jp sality, and a new kerngl9,10]. Other cases, such as two-
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dimensional(2D) gravity in the double scaling limit, or the wherey is Euler's constant and *(z) the determinant of a

Penner model, would certainly be of interest as well. Dirac operator, defined below. The derivation goes as fol-
lows. Let us introduce a functioB(z) that satisfies the func-
Il. SINE KERNEL tional relation
For completeness, and for later use, we begin with the G(z+1)=T'(2)G(z). (14)

bulk unitary case, governed by the sine kernel, but with a

derivation that differs from our previous ofié]. An inter- It is then straightforward to verify that
esting geometric interpretation of this problem will also be

provided. The kernel, from which all the correlation func- “n oz T2
tions may be obtained, is given in terms of orthogonal poly-  Yk— IHO (K+1)! = T(K+1)
nomials for finiteN, but reduces in the Dyson largilimit to 2

the sine kernel

Gy |?

G(K+3)

(15

o A function G satisfying the functional relatio(l4) is known
K(X,y)= sinx—y) (7)  inthe literature as a Barnes functi¢ar as the inverse of a
X—y digamma functioh It is defined by

in which x andy are the eigenvalues measured in the scale of
the average spacini2mp(A\)N] ™. Thus one obtains the G(z+ 1)=m
normalized moments
:(ZW)Z/ZE—[Z+(1+7)22]/2
_ 2K
:eiNKVO\)([de()\ X)] >: _ detK(\; ,)\j), ® .

[27Np(N) 1K x:To A%(A) <1
i

|
K —-z+ 22/(2n)

e . (16)

4
1+~
n

where A(A)=1I;-;(Aj—X\;) andi,j=1,... K. The right- . , . L
hand side may be expressed as a contour integral, followinlj has been noticed earli¢i.3] that this Barnes function is

Eq. (52) of [6], rezlated to the_ Fredholm determin_ant o_f the Lapla_lcian on
S°. Indeed, this Fredholm determinant is ttregularized
K dudv, A(UWAV) & sin(u—o;) product
IK:fﬁ %H (2mi2 & K .1:[1 u—v; z\9
[1 ufIl of A=]] (1——) , (17
iZ1 Q=i [ A
9
_ where the\, are the eigenvalues of the Laplacian ajdheir
This may be further reduced to degeneracy, i.e),;=I(1+1) with multiplicity g,=21+1, |
=0,1,2 ... . It is convenient to shifz by 1/4, since this
lx=detam), (10 yields the the spectrum of the Dirac operator
1 " 9" sinu—v) F 1
_ o 7 NF =14 = 18
&nm= H i ot gu™ u—v | (11) g 2 (18

Then the regularize¢shifted Fredholm determinant

21+1
( 1— z el +1/2)2 (19
(I+32)?

wheren,m=0,1, ... K—1. The explicit evaluation of the
determinant ofa, ., gives

k-1, A@=11
: (12 .

defa,y,) = LS

i=o (K+)!"
factorizes as

We do recover in this way the factark [Eq. (5)] (up to a 2 Y .
A(—y9)=A AT (— 20

factor ZKZ‘K due to a different normalization of the kerhel (=¥9) (y)AT(=ly) 20

It is quite remarkable that this universal normalizing fac-\yith the determinant of the Dirac operatar (z) given by
tor yx has a geometric interpretation as a Fredholm determirq 5

nant of the Dirac Laplacian on the two-dimensional sphere

S?. The determinant of the Laplacian has been discussed in * 2 , ,12+1
connection with string theorj1,17], and the relation ofy A=l 1]]1- — g (It 1)+ 27201+ 172)
to this Fredholm determinant of the Laplacian was noticed in =0 |+ =
[5]. Indeed, let us show that 2
(21
eK?(1+7) ) . . .
Y= , (13)  Then this Dirac determinand™ is related to the Barnes

AT (—K) function by
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(L—2)G(L—2)2 namely,a=1/2 anda= — 1/2 represent, respectively, the Sp
AT (2)= 7 Y2(277)2e(1ty+2l0g 2)2° "2 2 . and the O ensemble. We consider from now on an arbitary
G(5)? The 2Kth moment at the origin\=0) is expressed as
(22)

2 2y K
We thereby recover the expression relating the moment l= § ﬁ; dudv A(u )A( )H U)K (Ui ,v;).
to the determinant13). (277)2 w2y 2K =

This relation between the moments of the distribution and

the determinant of the Dirac operator 8his in fact general. (29)
For instance, in the simplest case of a single Gaussian ran-
dom variable, the moments are We define now the two functiong(z) and ¢(z) by
Jm xXedx=T(K+1); (23) f |
— 302=| 7| Frarp @ (30

I'(K+1/2) is thus the equivalent qu for this trivial prob-
lem. If we consider the “Laplacian,” i.e., the harmonic os- 2"d

cillator whose eigenvalues akg = n, then the Fredholm de- -
a

terminantA(\) is
M) V23,(2)= 2. (3D
- A
A =—]] (1——)e“” . o .
n=1 n Their expansions in powers afare given by
— (29 Gty
T(=\)° p)=2, ——f (32
Hence, we have 4™n! |1:[1 (at)
2K e?’)\
(x7%) : (25) “(—1)" ”(a—l— 2n)
A(M) A=—(K+1/2) Z (33
. . o . . n=o 4“n'H (a+1)
The expressionil3) is a multivariable version of this Gauss- o S

ian integral.

_An addltlgnal p0|n.t of |nt2erest Is that the_ Fredholm qeter'Keeping aside trivial factors we are then led to the kernel
minant of this Laplacian o8~ may be factorized further into ~ .
a product of two factors; it turns out that each factor enter§<“(x‘y) defined as
into the corresponding expression for the symplectic and or-
thogonal cases, respectively. This will be seen below when

R xX,Y)= X . 34
we examine the moments related to the Bessel kernel. «(%.y) 2(x—y) [4(x —YX)e(y)]. (34
Ill. BESSEL KERNEL As before, we have
. Wg have discusseq in our previpus worlg the ensembles | «=dela,) (35)
invariant under the unitary symplectic and unitary orthogonal
Lie groups[6]. The kernels for those ensembles Eré—16  \ith
sin(x— sin(x+
K(xy)= o | SIEY) STOCEY)) o LS
2w\ X—y X+y Apm= K,(u,v) ) (36)

n'm! ﬁ am o
u=p=
where the minus sign corresponds to the Sp and the plus sign ’

to the O ensemble. It is convenient to introduce the Besse"h|s determinant may be Computed exp||C|t|y, and itis g|ven
kernel defined by by

Jo(X) I () =I5 (x) oY) 2K -
Ka(xy)= =y L@ maak ] L

i=o (a+l)!” 37

SinceJq5(X) = y2/mx sinx, J_q5(X) = y2/mx cosx, the ker-
nels for the Sp and O ensembles are both related to thidVe havel ;= 3%,1/3m,1/7 for «=0,3,— 3, respectively.

Bessel kernel It is interesting to relate the three determinants that we
have introduced above for the sine kernel and for the Sp and
K. (X,Y) = VXYKs 15X, y2), (28) O cases. The determinant for the sine keifd) is
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1 0 ! 0
6
1 1
0 = 0o —-=
g 3 30
u=det 1 1 (39
-—= 0 — 0
6 20
0 1 0 20
30 7!
In the symplectic casey=3, we have
1 1
3 30
lg=def 1 20 (39
30 7!

In the orthogonal case, the determinant becomesafer
1

(40)

Thus, we find the factorization of E38) as the product of

Egs.(39) and(40), up to a trivial numerical factor due to the

normalizations,

IUZIprlo. (41)
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_AIAI(y) —AIT(X)AI(Y)

oy (44)

K(x,y)

In Eq. (44) we have used the scaling variabbesndy pro-
portional toNZ3(\ — ).

There are two ways to obtain the moments under consid-
eration. The first one is to write as before

du A(u)A K
= (lden =179 = § o S T Koo,

i=3D1
[ ufof
i=1

(45)

but in this case, there are three periodic structures due to
three valleys of Airy functions, and the result is more com-
plicated. It does not seem to be expressible as simple prod-
ucts of gamma functions. However, we can use a direct
method starting with the expression

2K

= ([de(h—X)]2<) = jldzAz(z)e(”"‘); 7.

(2m)2<) -
(46)
This representation is the edge limit—0 of
e du; A(z)A(u)
FszfixH dz §2_77||
l_i[ H (Ui=NctNy)
w eNE2(113)7 +izyu] (47)

The sums and products overun froml=1 to|=2K. The

dependence df ,« on N is of orderN2K*/3-K_
We may then use the standard orthogonal polynomial

The factorsyy for the unitary, symplectic, and orthogonal method. To the complex measure

cases are related asK21yW=yEM0)  and

= (IS 27T,y SP= 2K DR e (211,
and y{O2KK DRI Ik 21)1, It is again remark-

dp=dz 23 (48)

able that, for arbitraryr, yx may still be expressed as the we associate the orthogonal polynomig|sdefined as
Fredholm determinant of the Laplacian, in which the eigen-

values are shifted by the amoumt[13].

IV. AIRY KERNEL

When the eigenvalues lie near an edgeof the support
of the asymptotic density of statdan edge of Wigner's

semicircle in the Gaussian casé a neighborhood of size

N~23 of that edge, there is a crossover from the sine kerneThe integral of Eq(42) is then simply

to the Airy kernel. In terms of the Airy function AX), de-
fined by

©

Ai(X)= — dz éi/3)23+izx, (42)
277 —
which satisfies the differential equation
Ai”(x)=xAi(x), (43

one has

pn(X) =x"+ (lower degreg (49)

and
f die Pa(X)Pm(X) =N oy m- (50)
I=K!hohy---hg_q. (51

Note that this looks similar to the partition function of a
matrix model, but here it is the partition function ofka

X K matrix model, instead o XN (K is finite, since it is

the order of the moment that we are considering, whekeas
goes to infinity. Therefore for anyK this is a completely
explicit expression of the moments at the edge. Those coef-
ficientsh,, are expressible in terms of ratios of determinants
constructed with the moments of the measure:



3562

h,= dn 52
n_dn—l ( )
with
Mg my mp
m m m
d —de 1 2 n+1 (53
My Mg Man

in which the m,, are the moments of the measure. Those

determinants are constants along antidiagonal liktskel
determinants Then the produchgh;- - -hy 4 is reduced to
a single determinant. For example, we haveKor 4

Cc, -—iC, 0 iC,
e -iC, 0 iC; 2GC,
oinohg=det ic, 2¢, o (54)
iC, 2C, 0 -—4C,
with  C;=Ai(0)=3"29T(2/3), C,=Ai’"(0)=-3"1%

I'(1/3), since all the moments up hay are easily expressible
in terms ofmy andm; alone.
More generally we have

M= [ 2 dp= (=i (n-2)(0-5)n-8) A,
(55

where A,=C; for n=0 (modulo 3, A,=C, for n=1

(modulo 3, and"An=0 forn=2 (modulo 3. The last paren-
thesis of the product in the RHS of EG5) is the rest of the
division of n—2 by 3. Then,d, is the determinant of a
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[<ZO>,<Z>,<22>, .. .]:[Cl, iCZ,OiC]_,ZCz,O,
—-4C,4,10C,,0,—28C,,—80C,,0,...], and all the others
are given by the Hankel rule. In thls way we obtain suces-
sively
hy=C,=0.355028 053,

hoh;=C3=0.066 987 483,

2
IT h=2c3+c3=0.010074 161,
0

(56)
3
IT h 3ct=
0
4
1_0[ h,=72C5+28C3C2=0.000313 095517,

8C,C3— 0.001 580882,

5
IT h=-2160c5—1952c3C3-432C8
0

=0.000090 756 324.

Therefore for the edge problem we have found moments
given by vyk's which are more complicated sinceg
=113%"th,. The result is explicit for any finit&, but we
have not succeeded in continuing it to nonintegerThe
numerical values indicate a smooth curve in a logarithmic
plot.

V. FINITE N RESULTS

We derived in our previous papgs]| the correlation func-
tions of the characteristic polynomials in the form of a

Hankel matrix, whose matrix elements in the first row aredeterminant,

K
Fe(hg, ... ,)\K)=<1:[ de()\|—X)>

Pm(N1)  Pm+a(Np) Pm+k-1(N1)
1 Pm(N2)  Pm+1(N2) Pm+k-1(A2)

BEG VPR W it B : (57)
Pm(Ak)  Pm+1(Ak) Pm+k-1(Ak)

in which X is anM XM random matrix.

The polynomialgp,(x) are the(monic orthogonal polynomials, whose coefficients of highest degree are equal to unity,

pn(X)=

x"+ (lower degreg.

(58)

If we are concerned simply with the moments of the distribution of a single characteristic polynomial, we obtain fi&7 Eq.

(M) =Fg(\, ... N)=([de(A —X)]*)
pm(N)
(—1)KK-Dr2 Pa(N)
:Wd :
IHO (m p(- D)

Pm+1(N) Pm+k—1(N)
Pum+1(N) Pu+k—1(N)

. (59
pM+11)(7\) Sfﬂ%) 1(N)
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For the Gaussian distribution,

1 N )
P(X)= —exp— =Tr X, 60
(X) N -3 (60)
with
M=N-K, (61

the polynomialsp,(x) are the Hermite polynomialsl,(x),
defined with our normalization as

=" ( d
H — 7 aNx2l
n(X) NG e

_ 2
Ix © NX*2= x"+ (lower degreg.
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over a contour that circles around the origin in thplane
turns out to be well adapted.

Note that all these expressions are valid for filteWe
may thereby recover readily several results that we have dis-
cussed in previous sections. For instance, let us assume that
M is an even number, and consider the center vale€d
(since the dependence ans known to be contained entirely

in the overall fact0|[p()\)]'<2, as far as the coefficieniy is
concerned, it is sufficient to put simply=0).

The Hermite polynomialdd,(x) vanish for oddn at x
=0. Similarly, the odd derivatives dfl ,(x) for evenn also
vanish atx=0. Hence, the elements of the determing8)
are alternately nonzero and then zero. Thus the determinant
is decomposed into a product of two determinants; this is the

(62) exact phenomenon for finitdl of the factorization of the
The intearal representation symplectic an_d orthogonalldetermlnants that we saw earlier
9 P for large N. Since the matrix elements of Ep9) at A =0
(- 1)”n| dz e N@2+x) are all expressed as derivatives of Hermite polynomials at
Hy(X)= ———— j; P (63) the origin, it is possible to compute this determinant exactly
2im  Zn+1) for finite and arbitraryM andK. For the everM case,
|
Hwm(0) Hy+2(0) Hu:1(0)  Hy.3(0)
—DKECD ] HR(0) HYL(0) Hiiea(0) HiLas(0)
F(0)= - de M' M+2 M+1 M+3 (64)
| — — _
Izl;[DO () ngzK 2)(0) H(Mzrizz)(o) (2K 1)(0) Hﬁﬁsl)(o)

We denote each determinant HE/NKM2 gnd | (2)/NKM/2,
respectively, and

KM 2K—1 (69

1L

1 1
Fox(0)=1M012) —
N

The two determinants contain overall products of factors of
the form (2h—1)!!; once they are extracted one finds

The above two determinants are easily computed through the

explicit expressions for thel,(x)’s,

H2n(X)=%(—1)“(2n—1)u
(—n)(—n+1)...(_n+m_1)
m=0  (3)(z+1)---(3+m-1)
1 Nxz)m
w2 ) (66)
1
H2n+1(X):m(—1)n(2n+1)!!x
(=m)(—=n+1)---(—n+m-1)
=0 ($)(3+1)---(3+m-1)

1
X —
m!

NX2> m
- - (67)

I N=C(M+2K—3)!I1 (M+2K—5)!1---(M—1)!
K
1 r(M+21-2)
T oIK(M K- 3)/2|1;[1(F(M/2+I— )) (68)
I@=C(M+2K—1)!I1 (M+2K—3)!1---(M+1)!
K
1 L'(M+2l)
_CZ[K(NHK 1)]/2 .Hl T(M/2+1))’ (69)
with
K—-1
C=2KK=D]T 1, (70)
1=0

which is independent oM. In the largeM limit, from the
Stirling formula, we have

| (1) = C MIMK+K(K=1))/2g=MKI2pK/2 (71)

| (@)= C MIMK+K(K+1)]/2g = MK/29K/2. (72)

It is remarkable that, even for finité (M is the size of the
random matrix, F,x(0) for this Gaussian distribution
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already exhibits the factor y=IIKG!/(K+I)!  and
= (I[N 211255 M1, which is known to be universal in the iiN-B 79
large M limit. It is indeed obtained from the product of the = z (79
factor C and 1/(17%; *I!) in Eq. (65). This means that, at |f one expandsf(s) up to orderz®, one sees that in the
each order of the ¥ expansion, we keep this universal fac- proper scaling choicee=2/3 andIB: 1/3, one recovers the
tor for F,¢(0). In thelarge N limit (M=N—-K), F,«(0)  Airy limit which governs the properties of the system in a

becomes neighborhood of sizél ~%° of the edge of Wigner's semi-
-1, circle. Then the integral becomes
- K2 ,—NK : -
FZK(O) (ZN) € 1_OI (K+|)!' (73) |:(_i)5N71/3J' dyéy3/3+izy (80)
In the previous paper, we deriv \), in the largeN
limit, asp pap (M) I This is indeed the Airy function AK) of Eq. (42),
y 7NKK*1 h His s(X)=V27NePN(—i)Ai(x—2)N?3).  (81)
Fac(h, .. M)=[2mp(MN]™ e 1:)[ (K+D!" We now consider all the.;=2, and the determinan®9)

(74  becomes in the largl limit a determinant of Airy functions.
) ) If we replaceH ;. ox_1 at the right top corner of the deter-
At the band center\=0, the density of state is(0)=1/m  minant by the Airy function AG0), theother matrix elements
for the Gaussian distribution. Therefore, E@3) is indeed  pecome derivatives of the Airy function, since there is a
consistent with Eq(74). recursion relatior(75). For example, in th& =1 case, we
It may be interesting to note that one of the factors of Eq5ye

(74), namely, 112X, X(11), appears inF,(\) in Eq. (59).

This factor, a product of gamma functions, remains for any N3 - Ai(0)
set of orthogonal polynomials, since it stands in front of the  |H\,(2) Hpy41(2) M +1A' (0) (
determinant of Eq(59). de H(2) HI (2 ‘~det NTE

The factore N is cancelled by the normalizati¢f]. For u(2) Hua(2) Ai"(0) NZ°Ai’(0)
A#0, we have evaluateB,.(\). We have here considered M+1
the finite N case to see the universal factpg . (82

One can recover again the Airy limit by the use of EQ.Then we find in the largé limit, with N=M —K
(59). We use once more the properties of the Hermite poly- ' ’

nomials, such as NKkeDE | Ai’(0) Ai(0)
Hi(X)=nH(x), (75) Fox(2)= —g=r—det -~ AI"(0) AI"(0)]. (83
and their explicit integral representation, |=Ho

1 — _ The above determinant was discussed earlier. Note the factor
Ho(X)= \/?Nl’ze'\lx ’Zf ds ge Ns2-iNxs (76)  1/I12 Y1 in front.
s —o0
L. VI. DERIVATIVE MOMENTS
We setn= 6+ N, and after exponentiation we have
The same techniques may also be used if one is interested
in the moments of th®th derivatives D=1,2,...) of the

1 25 [
— 1/2,Nx/2 —Nf(s) L. . . .
Hn(x)= /—sz e fﬁmds ge ' (7D characteristic polynomials. Let us consider, for instance,

2K D
where f(s)=3s?+isx—logs. The saddle points are degen- FOMN, ... x0={ TI a_de()\__x) . (89)
erate at the edge= 2. The vicinity of this point is blown out RV T\ '

through a change of variables, with a scaling ansatz ) ) )
From Eq.(59), one sees immediately that it also has the form

x=2+N"“y (78 of a determinant:
J
pl(VID)()\l) P(nﬂl(M) s pg\;IDlZKfl()\l)
FO() Ay ) = 1 . puA2®  plih2) o plak-1(N2) 5
2K 1y = = = 4\ 2K A()\la---a)\ZK)

P (Aak) P iNak) o P ak—1(Aak)

When all the;’s are equal, we have
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:

dD
FSRN, . )\)=<<d)\—Dde()\—X)

PP (V)
(—pke=D | pRtP0y
=—2xk-1  de

[T an
I1=0
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Sl:)ll()‘) pl(\ADJ)rzK 1(N)
P () P20 1(N) .
P20 PPN

If we setA =0 it may be again decomposed into a product ofD =0, it reduces to the previous expressi@8). |(?) is ob-
two determinants. Let us assume for definiteness thatMoth tained froml*) by the shiftM —M +2.]

andD are even. Then we have

H{{(0) H{?,(0)
W_gel TN O HRDO

HEZ " #20) HRZ2(0)

(87)
HIE0)  HRPO)
(@_gef T HRIPO
HSl:)::LZI;_l)(O) H(D+2K 1)(0)
(89

In the largeN limit, we have

1 K-1

(D) +2 )
FP)(0)=(2N)K*+2KDg K 22KD|HO(K+I)!'

(92

Hence, for these derivative moments at finile again the
universal factoryy is present, and it persists, of course, in
the largeN limit.

These results lead to the conjecture that the average of the
moment of derivatives of the Riemann zeta function along

the critical line
107 |dP° 2
| = ?fo dt

@i (93

1
§+|t

also have this universal factoy .

Using the explicit expressions for the Hermite polynomials,

we can compute these determinants. We find for arbitrary

M, D, andK,

1 | (1))
NK(M-D) 2K-1

FR(0)= (89

I W=(M+2K—=3)1I (M+2K—5)!! ..

K-1
<[]
=0

(M=1)!1

M -1 M_D I+1
E+ - 3—54‘ +
K-1

><2[DK+K(K—1)]/2H I,
=0

(90)

I(2)=(M+2K—1)!!(M+2K—3)!! .

><H

A(M+1)!!

L.

M | M D |42
K-1
><2[DK+K(K—1)]/2H I, (91)
1=0

[One may easily check these results fa=M, since the

VII. EXTERNAL SOURCE

We now consider the case in which the external source
matrix A is coupled to the random matri The measure of
the random matrixX is

N Tr X2/2+N Tr XAdNZX

1
du(X)= e (94)

The eigenvalues of the matriA are denoted bya;, i
=1,... N. In such cases, the standard orthogonal polyno-
mial method cannot be used. However, thpoint correla-
tion functionsp(\, ... \,) have been found to be de-
scribed again by the determinant of a kernel; from there the
level spacing probabilityp(s) has also been investigatfd.

If we specialize to a source that has two opposite eigenval-
ues, namelyg;=+a for i=1,... N/2 anda;=—a for i
=N/2+1,... N, we find a support for the eigenvalues
made of two disconnected segments ¢ 1. If one tunes
the external source so that=1, i.e.,a;=*1, the gap be-
tween the two segments closes and the spectrum consists of
a single segment faa<<1. We want to investigate here the
critical point a=1 which gives rise to yet another class
of universality. The moment&,x(\, ... ,\) at A\=0 at
this closing gap point may turn out to have interesting
applications.

matrix elements below the diagonal vanish, i.e., the determi- SinceX andA are Hermitian matrices, we write
nants are then simply given by the product of the diagonal

eIementﬂTlK:O(M +21)! which agrees with Eq(90). When

TrXA=TrU 1X,UA,, (95)
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where Xpo=diag(x4, - .. Xm), Ap=diag@;, ...,ay), and Inthe above equation, the random mafixs assumed to be
U belongs to the unitary group. The integration over thisan M XM matrix, with M=N—-K, as before. Wheik =1,
unitary groupU is well known from the work of Harish- this gives a polynomial, which was investigated befldré].
Chandra and lItzykson and Zubgt8,19, and this is the Explicit integration over the unitary groud.8,19 leads
starting point of the formulas found {8]. For instance, the to

n-point correlation functions are given by the determinant of

the nXn matrices made with the kern&l(\;,\;) with M A(Xgy oo XAy - e AR
FK()\lv e 1)\K): H dXi
N i i= A(a)A(N)
= dt du— a—it 1 =1
"= 27 P 2mith uma uit v
Xef(N/Z)E AN xa 99)
¢ @ Nt/2+ Nith = Nu?/2+ Nup+ NN /4~ N2/ (96) i=1 =1
where the contour encloses all thgs. whereA(Xy, ... Xw;A1, ... \g) is the Van der Monde de-

However, we may proceed without that here and computéerminant M +K) X (M +K) made with the's and the\’s.

the correlation functions of the characteristic polynomialsThis determinant may be replaced by a determinant of
directly. Indeed, (monig) polynomials, and we choose the Hermite polynomi-

als defined in Eq(62). It is then straightforward to verify
K that
FK()\la' t l)\K):< ];[]_ de()\a_x)>

o 2
K j Hn(x)e—Nx2/2+Nade= aneNa’2 /W' (99)

1
=2 | axIT detr,—X)
Z =1

, Therefore we can explicitly integrate over thevariablesx;
X @ NTrXT2ENTIXA (97)  in Eq. (98 and obtain

1 1 Ho(X\y) Ho(Ak)
i z , : : . (100
ay "t an ™t HyikedN) o Hiek-a()

FK()\l! e ,)\K):m

Let us first check that in the limit of a vanishing source in
which all thea;— 0 we do recover the previous formuly). f Gy(iby, ... ib)e NZribi
The column that depends upanis expanded in Taylor se-
ries arounda,, and, subtracting the successive columns, we 1\K ,
obtain, after factoring the Van der Monde determinAfa) = (N) AMNF(Ng, ... A)e (NVDEN (102
which cancels the denominator, a vanishing upper triangle
(up to theMth column, 1s on the diagonal and powers of the
a;'s below the diagonal. We can now let thgs go to zero , .
and we are left with th& X K of Eq. (57). (In [6] we gave a | nerefore, we obtain the explicit formula,
different derivation of this same formuja.

If we return to an arbitrary nonvanishing external source,

‘< db,
12w

K

we may proceed by returning to Eq100 and define Felhg, o A= e(N/Z)ZMzif ﬁ %
Gk(by, ... by), KARL BRI A (V) K!') 25 27
M K
Gy(by, ... ,bK)=f FrOhgy - MOAN) le;[l (Ib|—aj)ll}, (iby—ibys)
2 .
Xe’(N/Z)E)WZ*NE A'b'H dh. X @~ (N2)Zbj de(e—lNMbp). (103
I
A@D) v Note that Id replace det(M ™ in the integrand of
:We( )Zby (101 ote that we could replace def{ ) in the integrand o

Eq. (103 by the diagonal terne~N>1P and cancel thé!

in the denominator. Again we can examine the limit of this
We may now recoveF by taking the Fourier transform of formula when the external source goes to zero, and putting
Gk(iby, ... ibk), all ;=\ we obtain
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NK(2K+1) 1

ESSINTTIT
I
1=0

Fok(N) =

KN)\ZJ H bl Z(b)

2 S 2K db
—(N/2)Sb?—iNX D, by it
X e i |H1 - (104

CHARACTERISTIC POLYNOMIALS OF RANDOM . ..
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From the expressiofil03), it is also easy to obtain the
moments at the critical point corresponding to the closure of
the gap:

K

eNM72 (1+b 2)MI2A2(y) @~ (N’Z)Z b7

(107

Fr(0)= H

(we have considereB instead off in order to compare Note that this expression is exact for finke In the largeN

with our previous resuljs In the largeN limit, we exponen-

limit, we exponentiate the logarithmic term and expand the

tiate b (M=N—K), and look for the saddle points which exponent aboub, up to the ordeb? term. The critical point

are the roots of the equatidt+iNb—1=0; let us call the
two rootsb™ andb~. The differencglb™ —b~|=2mp()\).

The leading saddle point for thg's (I=1, ...,X) is ob-
tained by choosing half of them equaltbd andb™ for the

another half. The Gaussian integral with a Van der Monde

determinant,

1 ”
H db —Nf b2/2H (b b. )2

i<j
20 K/2
Nf"

K-1
ITn
=0

(Nfrr)K(Kfl)/Z’ (105)

where f” is the second derivative dfat the saddle point,

Integrating then
around the saddle poinks” andb™~, and keeping in mind the

allows us to complete the calculation.

combinatorial factor (K)!/K!K!, which is the number of
choices ofKb™ and Kb~ among the Kb,’s, we recover
precisely our previous result,

e—NKV()\)FZK()\):[ZWNP()\)]KZe—NK,yK’ (106)

where
Y= (H
andV(\)=\?/2,

G2y = (MM K+,

is precisely the point at which the coefficient of the quadratic
termb? vanishes. We then have

—(N/Z)E bt A%(b).
(108

Fu(0)= < NM’ZJH

As in all the cases that appeared in the previous sections, this
integral is expressed by a Hankel determinant, in which the
matrix elements ar€&€' ((2n—1)/4). The determinant is

rag 0 @ o
0 T 0 I
rg o0 1@ o

|=de (109

Note that we have considered the case + 1, but the for-
mulas are explicit for any spectrum of the source and they
could be easily used to study, for instance, the multicritical
situations that were discussed[®.
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